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LElTER TO THE EDITOR 

Diffusion in a fractal model with flights 

R B Stinchcombe 
Theoretical Physics Department, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
U K  

Received 12 September 1985 

Abstract. Fractal, walk, and spectral dimensions d,, d ,  and d,  for diffusion on a fractal 
model with bridges are obtained from an exact renormalisation group transformation of 
the diffusion time. These results d o  not support a recent conjecture that dw+ 2 for highly 
crosslinked systems; nor is d ,  simply related (as in the Levy and Weierstrass models with 
flights) to exponents representing the distribution of flight lengths. However, an ‘Einstein’ 
exponent relationship between diffusion and conductivity is proved. 

The importance of fracton and fractal dimensions df,, df of fractal systems [ l ]  with 
bridges has been recently pointed out in connection with the properties of crosslinked 
bipolymer models of proteins [2,3]. In this connection it was speculated [3] that dfr 
could become equal to df when a sufficiently large number of bridges are incorporated. 
This conjecture, equivalent to having the walk dimension d, approach 2 in highly 
crosslinked systems, has since been questioned [4]1 on the basis of examples involving 
bridges of limited length. 

At the same time our understanding of the effects of arbitrarily long range hoppings 
(‘flights’) on diffusion has been devekoping, particularly influenced by the discussions 
of Lkvy flights by Mandelbrot [l] and of the Weierstrass random walk by Montroll 
and Schlesinger [5]. In these cases it is known that non-Gaussian behaviour (d, # 2) 
occurs because the distribution P (  L )  of flight lengths L has infinite moments, and that 
d, is related to an exponent describing the form of P (  L). This problem is rather like 
that referred to in the first paragraph since diffusion on fractals with bridges contains 
the effects of arbitrarily long range hoppings distributed in a manner to be described 
subsequently. 

In this 1etter.a rather general (two-parameter) fractal model with bridges is intro- 
duced and the diffusion problem is exactly solved for it by the use of recursive scaling 
methods (see for example [6]), in order to see which of the conjectured or possibly 
special relationships may be generally true. Relevant properties of the distribution 
P ( L )  of flight lengths are obtained, and it is shown to have infinite moments. As 
expected from this, an anomalous relationship between diffusion length R and time t 
is shown to arise, characterised by walk dimension d, where 

R a t ’ l d w .  (1) 

The walk and fractal dimensions d, and df are both obtained and also the diffusion 
spectral dimension d, which is given [7] by d ,  = df/ d,  = dfr /2 .  The walk exponent d, 
is not in general 2 and, in contrast to the conjecture, only approaches that value in a 

t See also [4a]. 
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particular limit corresponding to very infrequent bridging. Unlike the LCvy flight and 
Weierstrass walk models [5] no simple relationship exists between d, and exponents 
characterising the distribution P ( L )  and the reason for this is discussed. One further 
result concerns the relationship [8,9], which would result from an Einstein relation 
[lo], between walk dimension and conductance exponent and fractal dimension. The 
breakdown of this relation in some scale-invariance situations has recently been 
demonstrated [ l l] .  For the present fractal it is here verified explicitly. 

The fractal model is constructed recursively as the limit of a hierarchy of systems, 
each obtained from the previous one by replacing in it each bond by ( 2 p + s )  bonds 
in series of which an inner portion of s bonds is bridged by a single long bond (a 
'flight'), as shown in figure 1. The resulting fractal contains flights of arbitrarily long 
length. By considering successive members of the hierarchy it can be seen that under 
a change of length scale by factor r + s (where r = 2 p )  the number of bonds changes 
by a factor r + s + 1 so the fractal dimension is 

dr= In( r +  s + l ) / ln ( r+  s). (2) 

1 

A B 
a o =  

P s P 

Figure 1. Recursive construction of fractal, by iteratively replacing each single bond by 
2 p  + s bonds of which the inner s bonds are bridged by a single long bond. 

The diffusion process on the fractal can be exactly treated by a decimation procedure 
which provides a scaling relationship between the values A, A' of a diffusion parameter 
at two successive stages in the recursive construction. A is an eigenvalue of the operator 
shifting time by a unit step (at the stage reached in the hierarchical construction) and 
occurs as follows in the discrete diffusion equations associated with the three different 
types of site placing in the fractal, where the numbering of sites is as in figure 2 and 
U, is the probability of being at site n: 

Aul = f ( u o + u 2 )  (3) 

Au2 = t u l  + f u 3  (4) 

Au3 = f( u2 + u4 + u s ) .  ( 5 )  

Such equations can be used to eliminate the sites between A and B in the element on 
the right of figure 1, so replacing i t b y  a single bond (cf the left of figure 1) with 

Figure 2. Labelling of sites near a branching vertex of the fractal, for use in specifying the 
nature of the typical discrete diffusion equations. 
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renormalised parameter A'. The resulting exact scaling relation between A' and A is 

1 
A' =y [(A - c p - l p ) ( a 2 - b 2 )  -(c,,)'u]E R(A) 

b(c,,) 

where 

A E C O S  0 (7) 

c,, =sin &/sin m0 (8) 

U E 3A - ~ ~ - 1 , ~  - ~ ~ - 1 , ~  (9) 

b zz 1 + clr. (10) 

The fixed point of (6) is where A takes the value 

A* = 1. (11) 

To obtain the walk dimension, we require [6] the eigenvalue A of equation (6) linearised 
about the fixed point. The linearised equation takes the form 

where 6 = A - 1, 6'= A'-  1, and only terms linear in 6 have been retained; as before, 
r 2p. A is the factor by which the diffusion time changes (for long times) when the 
length changes by r + s, hence the exact value of the walk dimension d, defined by 
(1) is 

d, = In[ ( F ) ( r +  r s + r + s  s + l)] [In( r +  s)]-', 

and hence 
- 1  

d,  = ln(r+ s +l){ In[ ( + 1 ) ( r +  r s + r + s  s + l)]} . 

It can be seen from (13) that, contrary to the conjecture referred to earlier, d, = 2 
can only be obtained by taking r+oo at fixed s, which is actually the case where 
crosslinking is rare. 

A relationship between d,, df and the exponent i for the length scaling of the 
conductance has been obtained [8,9] subject to certain assumptions by combining the 
Einstein relation [ 101 between diffusion constant, density and conductance with a 
crossover argument. Counter examples to this relation can be given [ l l ] ,  but it has 
been shown to apply exactly for a particular non-random fractal [9] (the Sierpinski 
gasket) and we now show that it applies also for the fractal with bridges presently 
being considered. In this case, by combining in series r resistors and an element made 
from a resistor in parallel with s resistors in series, it can be seen that under a change 
of length scale by r + s the conductance of the fractal scales by 

=(r+s) ' .  
1 r+-- 

1 + 11s (14) 

This can be identified as the first factor in A, as given by (12); the other factor 
( r  + s + 1) = ( r  + s ) ~ ,  is that associated with the bond number scaling in the expression 
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(2) for df, i.e. with the density scaling in the Einstein relation. Hence we see that in 
the present case 

d , =  f + d f  (15) 

which is an explicit verification of the exponent relation from the Einstein rela- 
tion/crossover argument for the case of this non-random fractal. 

The last point to be investigated is a possible relationship of d ,  to an exponent 
characterising the distribution P ( L )  of flight lengths on the fractal. P ( L )  can be 
obtained as the limit for large n of the distribution P, (L)  of flight lengths on the nth 
member of the hierarchy used in the recursive construction of the fractal. The relation- 
ship between the distributions P,, P,+l of two successive members is easily shown to be 

( r  + s + l)P,+l( L )  = (r + s )P, (  L )  + ( l / s )P , (  L / s ) .  (16) 

So P ( L )  satisfies 

P ( L )  = ( l / s )P(L/ s ) .  (17) 

Defining the 0th moment by 

( L " ) =  dLL"P,(L) I 
it follows from (16) that 

( L " ) ,  K( r +  
r + s + l  

so 

( L " ) =  dLLuP(L)= lim (La), = O  a<O I n-tm 

The divergence of the moments (for a > 0) is the reason for the non-Gaussian character 
of the diffusion process [5]. 

From (17) it can be seen that P ( L )  can be written in the form L-tF+l'Q(L) where 
Q is periodic in In L with period In s and F = 0. A similar form applies for the 
Weierstrass walk and there the (non-zero) exponent F is related to the dimension d ,  
of the walk [ 5 ] .  A similar result holds for LCvy flights [ 11. In the present case however, 
d,  is not determined by F and this breakdown of the result which applies for the Livy 
flights and Weierstrass walk is due to the complicated recursion equation for P,,(L) 
which applies in the present case: (16) has two terms on the right-hand side (from the 
superposition of two 'dilatations', by s and by unity) while the corresponding equation 
for the Weierstrass walk has only one term and the resulting P (  L )  can be characterised 
adequately by F. In the present case detailed expressions for P ( L )  can be obtained 
by iterating (16) from the distribution P,(L)  = 6 ( L -  1) for a single bond, or by 
combinatoric methods. One asymptotic result, which shows clearly the appearance of 
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arbitrarily long flights, is 

1 "  
P ( L )  = lim A(n, r, s) - S(ln L- N In s) 

n-co L N = O  

xexp[ - 

(where A(n, r, s) is a normalisation constant). 
The conclusions of this work are that in the rather general fractal models with 

bridges of unlimited length here considered, or the associated problems of diffusion 
with flights, the walk dimension d ,  is not in general related to the exponent F 
characterising the flight distribution, nor can it be made equal to 2 except in the limit 
of rare crosslinking. In addition it was shown that the Einstein/crossover relationship 
between d,, df and the conductance exponent i does apply. 
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